The Great Gun Grab

A. Kazmierczak
T. H. E. Institute
1111 E Brooks St.
Norman OK 73071
akazmierczak1949@gmail.com

Abstract
In recent years in the US there have been a number of mass shootings in middle schools, high schools and colleges. These shootings have cost a large number of fatalities of Americans young people. After each shooting, the liberals come out with a call to ban guns, or certain types of guns. Americans have been in love with their guns since the American Revolution. In fact, the colonists only won because they possessed firearms. Gun owners will not willingly give up their guns. In this paper, we want to look at various ways liberals can get their way and the potential consequences.

Keywords: gun control, confiscation, liberals, NATO

1.0 Introduction

In recent years in the US there have been a number of mass shootings in middle schools, high schools and colleges. These shootings have cost a large number of fatalities of Americans young people. After each shooting, the liberal politicians come out with a call to “ban guns”, or certain types of guns. They are pushing for new legal measure to implement gun control. Americans have been in love with their guns since the American Revolution. Very many gun owners will not willingly give up their guns. In this paper, we want to look at various ways liberals can get their way and the potential consequences.

There have already been groups, including many law enforcement agencies, that have come flat out and said “NO! we will not obey those laws.” In response, the liberals have come up with the idea of confiscating guns if necessary. The same people have said the same thing “NO!” The liberals’ next idea was to have law enforcement officials confiscate guns. Law enforcement agencies across the country have expressed their feelings about this, “NO! Law enforcement will not act against the American people.” Unfortunately, in a few Northeastern states, laws have been passed to ban guns and gun confiscation has been done in those states. Liberals are trying to pass such laws in other states. We have to expect that many local law enforcement personnel will quit police work rather than trying to force their neighbors to give up their guns.
The liberals’ next idea may well try to use the military to confiscate guns. There is a clause in the Constitution that expressly forbids the use of American Military Forces to take action against US citizens. If law enforcement can’t or won’t do the job, perhaps other alternatives will be tried. Try using the state militia to confiscate guns. This will be like the American Civil War all over again, brother against brother. We can expect some militia members to resign rather than fight against American citizens.

There is potentially one other source that could come in and confiscate Americans guns. That would be to call in NATO Forces to carry out the confiscation. This will not be as simple as a NATO truck pulling up at your door and saying “Guns please”. With the American attitude that they will not give up their guns, there is a very great chance that shots will be fired between NATO Forces and American gun owners. Many believe that the first shot fired will be the first shot of the Second American Revolution. Let us explore how that option might work out.

### 2.0 Gun Owner – NATO ODE Model

Consider the mathematical model:

\[
G = \frac{a_1 G}{1+d_1 N} - \frac{a_{gn} GN}{1+d_2 N} - b_1 G^2 = 0 = G(gn) \tag{1}
\]

\[
N = \frac{a_2 N}{1+d_3 G} - \frac{a_{gn} GN}{1+d_2 N} - b_2 N^2 = 0 = N(gn) \tag{2}
\]

The populations \(G(t)\) and \(N(t)\) represent the number of gun owners and NATO forces respectively. The parameters are all assumed positive and their description is given in Table 1a.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>Growth rate of gun owners</td>
</tr>
<tr>
<td>(a_2)</td>
<td>Growth rate of NATO forces</td>
</tr>
<tr>
<td>(a_{gn})</td>
<td>Maximum per capita loss in N</td>
</tr>
<tr>
<td>(b_1)</td>
<td>Population loss in G</td>
</tr>
<tr>
<td>(b_2)</td>
<td>Population loss in N</td>
</tr>
<tr>
<td>(d_1)</td>
<td>Effectiveness of N in disrupting G</td>
</tr>
<tr>
<td>(d_2)</td>
<td>Resilience of G to N</td>
</tr>
<tr>
<td>(d_3)</td>
<td>Effectiveness of G in disrupting N</td>
</tr>
</tbody>
</table>

The values chosen for the parameters in the model are shown Table1b.
Table 1b Values of Parameters

<table>
<thead>
<tr>
<th>$a_1$</th>
<th>$a_2$</th>
<th>$a_{gn}$</th>
<th>$b_1$</th>
<th>$b_2$</th>
<th>$d_1$</th>
<th>$d_2$</th>
<th>$d_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>.5</td>
<td>.5</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

2.1 Gun Owner NATO Equal Populations

The first question to be asked is how can you tell what the population of gun owners is? Because every time a gun owner buys a gun from a gun dealer, their name goes into a federal data base of registered gun owners.

Reconsider our original mathematical model.

\[
G = \frac{a_1 G}{(1 + d_1 N)} - \frac{a_{gn} G N}{(1 + d_2 N)} - b_1 G^2 = 0 = G(gn)
\]

(3)

\[
N = \frac{a_2 N}{(1 + d_3 G)} - \frac{a_{gn} G N}{(1 + d_2 N)} - b_2 N^2 = 0 = N(gn)
\]

(4)

Since these are second order equations, to solve them we need to form the Jacobian and solve the Jacobian for equilibrium points.

The Jacobian is formed as:

\[
J = \begin{vmatrix}
\frac{\partial G}{\partial G} & \frac{\partial G}{\partial N} \\
\frac{\partial N}{\partial G} & \frac{\partial N}{\partial N}
\end{vmatrix}
\]

Taking the partial derivatives, substituting values for parameter, the Jacobian becomes:

\[
J = \begin{vmatrix}
G & 4G - 2N/(1+2N)^2 \\
-6N - 2N/(1+2N)) & 2/(1+3G) -2N/(1+2N) -N
\end{vmatrix}
\]

Now we solve the Jacobian for equilibrium points. We do that using the Maple CAS.

2.1.1 Equilibrium Points

The real valued equilibrium points are:

\{G = 0., N = 0.\},

\{G = 0., N = 4.\},
The eigenvalues for these equilibrium points are:

\( (0, 2) \)
\( (-13/9 + (1/27) \sqrt{3313}, -13/9 - (1/27) \sqrt{3313}) \)
\( (4, 2/13) \)
\( (0.547422083000000e-1 + 2.69265409004048*I, 0.547422083000000e-1 - 2.69265409004048*I) \)
\( (-1.20049095525000 + 6.86103818723393*I, -1.20049095525000 - 6.86103818723393*I) \)
\( (6.48125503250000 + 10.0921214207669*I, 6.48125503250000 - 10.0921214207669*I) \)

### 2.1.2 Stability

In this section we use the eigenvalues to test for stability.

<table>
<thead>
<tr>
<th>Equilibrium Points</th>
<th>Eigen Values</th>
<th>Node Type</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>{G = 0., N = 0.},</td>
<td>(0, 2)</td>
<td>Repelling</td>
<td>Unstable</td>
</tr>
<tr>
<td>{G = 0., N = 4.},</td>
<td>(-13/9 + (1/27) \sqrt{3313}, -13/9 - (1/27) \sqrt{3313})</td>
<td>Attracting</td>
<td>Asymptotically Stable</td>
</tr>
<tr>
<td>{G = 4., N = 0.},</td>
<td>(4, 2/13)</td>
<td>Repelling</td>
<td>Unstable</td>
</tr>
<tr>
<td>{G = .4891955799, N = .6319394087}</td>
<td>(.5474220830000000e+2.69265409004048<em>I, .5474220830000000e-2.69265409004048</em>I)</td>
<td>Repelling Spirals</td>
<td>Unstable</td>
</tr>
<tr>
<td>{G = -.4325627635, N = -.6082709305},</td>
<td>(-1.20049095525000 + 6.86103818723393<em>I, -1.20049095525000 - 6.86103818723393</em>I)</td>
<td>Attracting Spiral</td>
<td>Asymptotically Stable</td>
</tr>
</tbody>
</table>
As can be expected, the introduction of foreign troops on American soil is having a destabilizing influence.

### 2.2 NATO Forces Outnumber Gun Owners

Since there may be hundreds of thousands gun owner, it may be necessary to call in a few more NATO troops. Fifty percent more NATO may help.

\[
G = \frac{a_1 G}{1+d_1 N^{*1.5}} - \frac{a_{gn} G N^{*1.5}}{1+d_2 N^{*1.5}} - b_2 G^2 = 0 = G(gn) \tag{5}
\]

\[
N = \frac{a_2 N^{*1.5}}{1+d_3 G} - \frac{a_{gn} G N^{*1.5}}{1+d_2 N^{*1.5}} - b_2 (N^{*1.5})^2 = 0 = N(gn) \tag{6}
\]

This of course changes the Jacobian to:

\[
| 2/(1+3N) - 3/(1+3N) - G \quad -6G - 3G/(1+3N) | \quad | 9N - 3N/(1+3N) \quad 3/(1+3G) - (3G + 4.5GN)/(1+3N) - 1.5N |
\]

#### 2.2.1 Equilibrium Points

Using the Maple CAS the real valued equilibrium points are:

- \{G=0.,N=0.\},
- \{G=0.,N=4.\},
- \{G=4.,N=0.\},
- \{G=-0.4331330963,N=-0.4050035932\},
- \{G=-0.4345884397,N=0.1197573734\},
- \{G=-3.074988235,N=-2.874675564\},
2.2.2 Eigenvalues

Maple also gives the eigenvalues:

0, 0

-112/9 + (128/27)*sqrt(7), -112/9 - (128/27)*sqrt(7)

4, 0

-1.21987464895000 + 1.68955160788912*I, -1.21987464895000 - 1.68955160788912*I

-9.17015494741073, 15.4304003821107

0.548710843003933, -1.60074941050393


2.2.3 Stability

<table>
<thead>
<tr>
<th>Equilibrium Points</th>
<th>Eigenvalues</th>
<th>Node Type</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>{G=0.,N=0.},</td>
<td>0, 0</td>
<td>Attracting</td>
<td>Asymptotically Stable</td>
</tr>
<tr>
<td>{G=0.,N=4.},</td>
<td>-112/9 + (128/27)*sqrt(7), -112/9 - (128/27)*sqrt(7)</td>
<td>Attracting</td>
<td>Asymptotically Stable</td>
</tr>
<tr>
<td>{G=4.,N=0.},</td>
<td>4, 0</td>
<td>Repelling</td>
<td>Unstable</td>
</tr>
<tr>
<td>{G=0.5645952421, N=0.4242232302},</td>
<td>-1.21987464895000 + 1.68955160788912<em>I, -1.21987464895000 - 1.68955160788912</em>I</td>
<td>Attracting Spiral</td>
<td>Asymptotically Stable</td>
</tr>
<tr>
<td>{G=-0.4331330963, N=-0.4050035932},</td>
<td>-9.17015494741073, 15.4304003821107</td>
<td>Saddle</td>
<td>Unstable</td>
</tr>
<tr>
<td>{G=-0.4344789342, N=0.07995039023}</td>
<td>.548710843003933, -1.60074941050393</td>
<td>Saddle</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
Adding fifty percent more foreign does not seem to affect the overall stability of the system.

### 3.0 Even More NATO Forces

Perhaps fifty percent more NATO will not get the job done or will not get it done fast enough. So, double the original number of NATO forces

\[
G = a_1 G/(1+d_1 N^2) - a_{gn} G N^2/(1+d_2 N^2) - b_1 G^2 = 0 = G(gn) \tag{7}
\]

\[
N = a_2 N^2/(1+d_3 G) - a_{gn} G N^2/(1+d_2 N^2) - b_2 (N^2)^2 = 0 = N(gn) \tag{8}
\]

This changes the Jacobian to:

\[
J = \begin{vmatrix}
-2N/(1+4N) -G & -8G - (16GN^2 - 12GN)/(1+4N)^2 \\
-12 - 4N/(1+4N) -2N & 4/(1+3G) - 16GN^2 - 4GN)/(1+4N)^2 -2N \\
\end{vmatrix}
\]

#### 3.1.1 Equilibrium Points

The real valued equilibrium are:

\{G = 0., N = 0.\},

\{G = 0., N = 4.\},

\{G = 4., N = 0.\},

\{G = .6081201589, N = .3186790244\}

\{G = -.4334163760, N = -.3035622451\},

\{G = -.4344240097, N = 0.6000496273e-1\},

\{G = -3.740679177, N = -2.699888708\}
3.1.2 Eigenvalues

The eigenvalues for this are:

0, 0

-112/9+(128/27)*sqrt(7), -112/9-(128/27)*sqrt(7)

4, 0

-.84660701005000+1.71306981470163*I, -.84660701005000-1.71306981470163*I

-1.85240411231455, 4.78569675231455

.474822350546164, -1.37642690614616

5.61568442150000+11.5023751979819*I, 5.61568442150000-11.5023751979819*I

3.3.3 Stability

<table>
<thead>
<tr>
<th>Equilibrium Point</th>
<th>Eigenvalues</th>
<th>Node Type</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>{G = 0., N = 0.},</td>
<td>0, 0</td>
<td>Attracting</td>
<td>Asymptotically Stable</td>
</tr>
<tr>
<td>{G = 0., N = 4.},</td>
<td>-112/9+(128/27)*sqrt(7), -112/9-(128/27)*sqrt(7)</td>
<td>Saddle</td>
<td>Unstable</td>
</tr>
<tr>
<td>{G = 4., N = 0.},</td>
<td>4, 0</td>
<td>Attracting</td>
<td>Stable</td>
</tr>
<tr>
<td>{G = .6081201589, N = .3186790244}</td>
<td>-.84660701005000+1.71306981470163<em>I, -.84660701005000-1.71306981470163</em>I</td>
<td>Attracting</td>
<td>Stable</td>
</tr>
<tr>
<td>{G = -.4334163760, N = -.3035622451},</td>
<td>-1.85240411231455, 4.78569675231455</td>
<td>Saddle</td>
<td>Unstable</td>
</tr>
<tr>
<td>{G = -.4344240097, N = .06000496273},</td>
<td>.474822350546164, -1.37642690614616</td>
<td>Saddle</td>
<td>Unstable</td>
</tr>
<tr>
<td>{G = 3.740679177,</td>
<td>5.61568442150000+11.5023751979819*I,</td>
<td>Repelling Spiral</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
As we add one-hundred percent more NATO forces, stability of the system remains constant, no more unstable nodes than before and no more stable nodes than before.

4.0 Conclusion

In this scenario where we call in NATO forces to confiscate the guns owned by registered gun owners, the increased number of NATO forces make no difference. This is not all that surprising. There are millions of Americans that, even though they are not gun owners, would see this as an invasion by foreign troops. As more and more NATO troops become involved, so will many more of the people that love America become involved. It is not inconceivable that such a war would wreak havoc on the US, and turn the US into a second rate country.

5.0 References

3. "Firearms-Control Legislation and Policy".
11. Karp 2010, p. 121
12. Parker 2011, p. 62 n. 1
13. Parker 2011, p. 1
14. Parker 2011, p. 2
15. Parker 2011, p. 62 n. 4
16. Parker 2011, p. 36
17. Parker 2011, p. 3
18. Parker 2011, pp. 3–4
19. Alley 2004, p. 54
20. Alley 2004, pp. 53–54
22. Parker 2011, p. 4
42. Hemenway 2016.
43. Simonetti et al. 2015.
44. Safavi et al. 2014.
46. Anestis et al. 2015.
47. Irvin et al. 2014.
50. Pierce et al. 2015.
52. Tashiro et al. 2016.
59. Wintemute & Webster 2015.
63. Crifasi et al. 2015.
64. Rudolph et al. 2015.
65. Webster et al. 2014.
69. Britt, Kleck & Bordua 1996.
70. Kleck & Patterson 1993.
72. Huemer, Michael (2003), "Is There a Right to Own a Gun?", Social Theory and Practice, 29 (2): 297–324, doi:10.5840/soctheorpract200329215, archived from the original on 2017-12-13
73. "Facts About the Effects of Gun Policies Are Elusive but Important", Rand.org, retrieved August 11, 2019
74. Aylin Woodward (August 6, 2019), "Gun control really works. Science has shown time and again that it can prevent mass shootings and save lives.", Business Insider.com, retrieved August 6, 2019
78. Lester et al. 1993.
83. Gagne et al. 2010.
84. Caron 2004.
86. Caron, Julien & Huang 2008.
90. Langmann 2012.
100. Chapman, Alpers& Jones 2016.
103. de Souza et al. 2007.
106. Lubin et al. 2010.