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ABSTRACT. In this study  I  will discuss the limits  of fractional integral operators in the 
homogeneous  and  nonhomogeneous  Lebesgue  space,  the  Morrey  space  and  the  general 
Morrey  space.  In  particular,  in  this  study  it  will  be  proven  that  the  fractional  integral 
boundaries formulated in the Morrey space are generally not homogeneous. Evidence of 
integral  fractional  boundaries  formulated  in  the  Morrey  space  is  generally  not 
homogeneous  using  the  specified  maximum  operator  properties  in  space  and  using 
Hedberg's  inequality.  This  evidence  is  an  extension  of  Hardy-Littlewood-Sobolev's 
inequality  [11,  22].  My  research  related  to  BOUNDEDNESS  OF  GENERALLY 
FRACTIONAL  INTEGRAL  OPERATOR  ON  GENERAL  MORREY  SPACE  as  a 
scientific  work  that  must  be  published  in  an  international  journal,  as  for  the  results  I 
present in this journal, is the result of research
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for every r> 0 and k positive integers.                                                                                      

Based on Proposition 1 and Lemma 2 it can be shown that the maximum operator Mµ is 
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Next, for
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Fractional integral operators here are generally fraction
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Next, for I2 (x) is obtained,

By adding I1 and I2, obtained

Next, assuming f 6 = 0, suppose 

As a result, 
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for every x. Thus obtained,
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Thus, it is evident that the generalized integral fractional operator is also bounded in the 
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Thus, the boundedness of the fractional integral operators that are generally formulated in the 

Morrey space are not homogeneous resulting in the boundedness of fractional integral operators 

in the Morrey space which are generally not homogeneous. In ad

in the limitation of the fractional integral operator Iα in the Morrey space. Next, with the 

selection of functions, for each f 

Thus, if then Lp, φ (µ) = Lp, λ (µ). Also, if selected φ (t) = 

whereas if dµ = dx, for Lp, φ (µ) = Lp, λ (Rn) and for Lp, φ ( µ) = Lp (Rn).
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